On the Co-Occurrence of Refactoring of Test and Source Code

Nicholas Alexandre Nagy
Concordia University
Montreal, Canada
nicholas.a.nagy@protonmail.com

ABSTRACT

Refactoring is a widespread practice that aims to help improve
the quality of a software system without altering its external be-
haviour. In practice, developers can perform refactoring operations
on test and source code. However, while prior work showed that
refactoring source code brings many benefits, few studies investi-
gated test code refactoring and whether it co-occurred with source
code. To examine the co-occurring refactorings, we conducted an
empirical study of 60,465 commits spanning 77 open-source Java
projects. First, we quantitatively analyzed the commits from those
projects to identify co-occurring refactoring commits (i.e., com-
mits contain refactorings performed on test and source code). Our
results showed that on average 17.9% of refactoring commits are
co-occurring refactoring commits, which is twice as much as test
code-only refactoring commits. Also, we investigated the type of
refactorings applied to test code in those co-occurring commits. We
found Change Variable Type and Move Class are the most common
applied refactorings. Second, we trained random forest classifiers
to predict when refactoring test code should co-occur with refac-
toring source code using features extracted from the refactoring
source code in ten selected projects. Our results showed that the
classifier can accurately predict when test and source code refac-
toring co-occurs with AUC values between 0.67-0.92. Our analysis
also showed that the most important features in our classifiers are
related to the refactoring size and developer refactoring experience.
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1 INTRODUCTION

Refactoring is recognized as a fundamental practice to maintain
a healthy codebase. In practice, developers mainly refactor their
code to handle changes (i.e. new features and bug fixes [15]). In
addition, test code design and smells play an important role in test
code quality [7]. In particular, test smells are known to have a high
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survivability rate and are difficult to identify by developers [20].
Therefore, prior works have focused on detecting smells and design
issues in test code and proposed tools to help developers identify
them [1] and approaches to refactor them [8, 22].

Since test code is written to ensure that the functionality of
source code is working correctly, it is fair to assume that source and
test code are somehow related. Therefore, when developers address
source code quality issues by refactoring the source code, they may
need to refactor the test code as well. However, little knowledge is
available about this relationship and what factors of source code
refactoring influence test code refactoring, nor how it can be used
to suggest test code refactoring opportunities.

To that end, we began our study by identifying the refactoring
commits in 77 projects from the SmartSHARK dataset [16]. Then,
we determined whether they applied source code refactorings, test
code refactorings, or both (i.e., co-occurring refactorings commits)
using RefactoringMiner [19]. In the cases of co-occurring refactor-
ing commits, we examined what types of refactorings are applied to
test code. Next, we extracted features from source code refactorings
from both the commits that only refactor source code and those
that co-occur from ten selected projects. Then, we trained Random
Forest classifiers on these features to predict whether the commits
should co-occur and refactor test code. Also, we extracted the fea-
ture importance from our classifiers to determine which features
are most valuable in predicting when commits should co-occur. We
formulated our study into the following two RQs:

RQ1: How often do source and test code refactoring co-occur,
and what are the refactoring types applied to test code? We
found that most refactoring commits only refactor source code,
representing 73.9% of refactoring commits for the average project.
Co-occurring refactoring commits also represent 17.9%, which sur-
prisingly is more than double the 8.2% of commits that only refactor
test code. Additionally, we found that Change Variable Type, Move
Class, and Rename Method are the most common refactorings ap-
plied to test code in those co-occurring refactoring commits.
RQ2: Can we predict when refactoring test code should be
co-occurring with source code refactoring? Through our built
classifiers, we could accurately predict when test and source code
refactoring co-occurs with AUC values between 0.67-0.92 and me-
dian Precision, Recall, and F1-score equal to 0.70, 0.63, 0.66, re-
spectively in the ten studied projects. Also, our analysis showed
that the most important features for our predictive classifier are
related to refactoring size, developer refactoring experience, and
file refactoring history.

Finally, we make our scripts and dataset available online [12].

2 CASE STUDY DESIGN
Our main goal is to investigate the co-occurrence of source code

and test code refactoring changes based on commit level granularity.
Thus, we first wanted to differentiate between commits that perform
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refactorings to test code, source code, or both. Then, we investigated
the occurrences of each type of refactoring commit and the types of
refactoring operations applied to test code in co-occurring commits.
Second, we extracted commit related features to build classifiers to
predict when refactoring test code should accompany source code
refactoring and examined the most important features.

2.1 Studied Projects

Since our analysis aimed to investigate the co-occurrence of test
and source code refactoring opportunities, we needed to study
projects with sufficient development history. Thus, we resorted to
using the SmartSHARK dataset [16]. SmartSHARK is a publicly
available dataset that provides detailed information about the devel-
opment history of 77 Java projects. We obtained the SmartSHARK
MongoDB data dump published on 2021-09-08 [17]. The dataset
combines meta-data from several sources such as Git and issue
tracking systems. Also, the dataset provides information about
code changes, particularly the performed refactorings, which are
essential for our study. We cloned and analyzed the 77 projects.

2.2 Identifying Refactoring Related Commits

Once we obtained the 77 projects, we next wanted to determine
which commits in those projects performed refactorings. Since the
SmartSHARK dataset provides this information, we began by ex-
amining the collected refactoring information. The SmartSHARK
dataset detected refactorings on commits level using two different
tools, RefactoringMiner [19] and RefDiff [14]. In this study, we
decided to focus on studying the refactorings identified by Refactor-
ingMiner, since 1) prior work showed that it has better recall and
precision and 2) the newest version (i.e., version 2.2 [18]) supports
the identification of 85 different refactoring types, which is not
supported in the newest version of RefDiff [19].

Since we wanted to identify whether a refactoring is applied
to test or source code, we needed the associated commit and file
information for which it was identified. In the SmartSHARK dataset,
each refactor has a commit-id, which afforded us the ability to find
which commit the refactor was identified at. However, finding the
files touched by a refactoring from those that RefactoringMiner
identified was not a straightforward step. Thus, we decided to
use the hunks field information provided in the dataset for each
refactoring operation, which RefactoringMiner provided.

Yet, upon examining the hunk information in the SmartSHARK
dataset, we noted that some hunk information is missing (i.e., some
refactoring documents in the collection were missing hunk fields).
This is perhaps due to the complexity of linking the refactoring
changes identified by RefactoringMiner to the hunks identified in
each commit by the vesSHARK tool [16].

Therefore, we could not reliably use the hunks from the dataset’s
refactoring collection, so we resorted to running RefactoringMiner
ourselves on the identified refactoring commits from the 77 stud-
ied projects. By the end of this step, we were able to extract the
file information for each refactoring operation, which we used in
the next step to determine whether a refactoring in a commit was
performed on the test, source code, or both. Table 1 shows the sum-
mary statistics of all commits and the identified refactoring related
commits and their percentage in the 77 projects. We observed that
on median 16.7% (mean = 16.9%) of the commits in studied projects
are performing refactorings.
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Table 1: Summary of all commits and refactoring commits.

Commit ‘ Min. ‘ Median ‘ Mean ‘ Max.

1,066 3,380 4,856 21,365
1(0.0) | 579 (16.7) | 758.2 (16.9) | 3,239 (36.2)

Total
Refactor (%)

2.3 Categorizing Refactoring Related Commits

Once we identified the commits that perform refactorings, now we
wanted to determine whether the performed refactorings are done
on test code, source code, or both, and identify the applied refactor-
ing types. As described in Section 2.2, we first run RefactoringMiner
on each refactoring commit identified by the dataset. This step re-
sulted in a list of refactorings detected for each commit and their
associated information, such as the type (e.g. , move class, etc.), left
side locations (i.e. parent commit locations), right side locations (i.e.
child commit locations), and the refactoring description. In addition
and based on the refactoring location information, we were able
to determine which files were touched by the refactoring, and we
used the path to these files to identify whether the refactoring is
being applied to test code or source code.

To determine whether a refactoring was performed on test code
or source code, we applied the same detection approach that was
used in prior [3, 13] on each file touched by the refactoring opera-
tions. The approach is mainly composed of two steps. The first step
is to examine whether the file name either starts or ends with the
word “test”. Second, if this is the case, then we used JavaParser [21]
to parse the Java file (i.e., files ending in “java”). Then, with the
parsed file, we were able to eliminate test files with syntax errors
and detected JUnit-based test methods, which significantly cuts
down on false-positive test files [3]. Following these steps, if any
of the files touched by the refactoring are identified as a test file,
then we classified the refactoring as a test refactoring.

Once we had the refactoring data for each commit, we began cat-
egorizing all the commits based on the refactoring activity applied.
In our study, there were three categories that we identified for the
examined commits: test refactoring commits, source refactoring
commits, and co-occurring refactoring commits. Each commit in
our dataset will be categorized as one of those three types. Below,
we provide more details about each commit type:

o Test Refactoring Commit: For this type of commit, all applied
refactoring operations are applied on test code.

e Source Refactoring Commit: For this type of commit, all applied
refactoring operations are applied on source code.

o Co-Occurring Refactoring Commit: For this type of commit, there
are different refactoring operations that are applied on both
source and test code.

3 CASE STUDY RESULTS

In this section, we present the results of our case study.

RQ1: How often do source and test code refactoring co-occur,
and what are the refactoring types applied to test code?
Motivation: Refactoring is a heavily studied subject among re-
searchers, and most prior works have examined refactoring when
applied to source code (e.g., [2, 11]). However, there is little work
done on the different refactorings applied to test code, particu-
larly on test code that co-occurs with source refactoring (e.g., [3]).
Also, since test code quality is important [4, 10, 20], we set out to
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Figure 1: Boxplots representing the % commits with that
classification over the projects with refactoring commits.

investigate test code refactorings that co-occur with source code
refactorings.
Approach: As explained early, we applied a similar approach of
prior studies that used the JUnit standards for defining what a test
file is [3, 13]. In this approach, we used RefactoringMiner to first
determine which files each refactoring touched and flag those that
touched test files. Then, we were able to identify which refactorings
are applied to tests and which are only applied to source code.
With this method, while analyzing the commits with Refactor-
ingMiner, we categorized every commit in our dataset into; test
refactoring commits, source refactoring commits, or co-occurring
refactoring commits. Then, we calculated the percentage of each
commit type in each project in our dataset. Also, to determine the
types of refactorings applied to tests that co-occur with source code
refactorings, we used the test refactorings that occur in commits
that also apply refactorings to source code. Thus, we extracted the
refactoring type report by RefactoringMiner, and for each type, we
calculated its frequency per project in our dataset.
Result: Figure 1 shows the distributions of the percentage of the
test, source, and co-occurring refactoring commits in all the studied
projects. Although most refactorings are applied on source code,
instances of all refactoring types detectable by RefactoringMiner
can be found in the test code that co-occurs with source code refac-
toring. As shown in Figure 1, aside from a few outliers, the majority
of projects refactor source code more often than test code. Despite
this, we observed a wide variety of refactoring types being applied.
In Figure 1, source code refactoring commits make up 73.9% on aver-
age, compared to the 8.2% and 17.9% on average for test refactoring
commits and co-occurring commits, respectively. Despite this, there
is still a small portion of projects that take test code refactoring
seriously. Even when refactoring source code simultaneously, every
type of refactoring is observed in test code refactoring. With this
in mind, there is still a limited amount of refactoring types that
co-occur on test code across most projects. In Figure 2, we showed
the top ten most highly co-occurring refactoring types per project
based on the median. Please note we showed only the top ten due
to the limited space of the paper (a full list is in our replication
package). Figure 2 shows that the most frequent refactoring type
applied to test code in co-occurring refactoring commits are the
change variable type, move class, and rename method.

For the majority of projects, co-occurring refactoring commits
are infrequent compared to source code refactorings, and the
variety of refactorings applied to these commits is limited.

RQ2: Can we predict when refactoring test code should be co-
occurring with source code refactoring?

Motivation: As can be seen in RQ1, source code refactoring is a
more common activity for developers than test code refactoring.
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Figure 2: Boxplots of refactorings types applied to tests in
co-occurring refactoring commits.

Despite this, test code is still vulnerable to various smells that deter
the overall quality of the tests (e.g., [20]). To that end, we attempt
to use the information from the source code refactorings commits
to see if we can predict whether refactoring source code should be
accompanied with test refactorings.
Approach: We trained classifiers that can automatically identify
co-occurring refactoring commits. First, our classifiers take as input
a list of commits that are labelled as source code refactoring com-
mits or co-occurring refactoring commits (see Figure 1). Then, our
classifiers are trained based on features extracted from the applied
refactorings on the source code alone. In this study, we proposed
using different features that we believe can give a good indication
of whether test code should be refactored when source code is. We
first used all the information provided by the RefactoringMiner
tool [19]. Second, we extracted other features (e.g., the developers
refactoring experiences). It is important to note that all the studied
features are extracted from the source code refactorings in source
code refactoring commits or co-occurring refactoring commits. For
the sake of conciseness, we presented the features used in Table 2.
Since our dataset contains several projects and based on our
results for the first RQ, some of these projects have a very small

Table 2: Features extracted from the applied changes to
source code only in source code refactoring commits and
co-occurring refactoring commit. *These features describe a
set of commit features as opposed to a single feature.

Features

Definition

# of refactorings

# of source code refactorings observed in a commit.

# of left side locations

# of locations touched by refactorings from the parent commit.

# of right side locations

# of locations touched by refactorings from the child commit.

LOC left side Lines of code touched in parent commit by refactorings.
LOC right side Lines of code touched in child commit by refactorings.
# of files # of files touched by refactorings.

Average number of files

Average number of files touched across refactorings in a commit.

# of unique refactoring
types

# of unique refactoring types applied in a commit.

# of unique code ele-
ments

# of unique code elements identified by each refactor.

# of previous refactor-
ings

# of refactorings each file has had previously with the average
taken of all files.

Refactoring age

# of days since the last refactoring for each file, with the average
taken as its value.

Developer refactoring
experience

# of refactorings applied by the developer previously to this
commit.

Developer refactoring
commit experience

# of refactoring commits made by the developer previously to
this commit.

Refactoring type count®

A feature for each refactoring type in the commit, along with
its number of occurrences as its value.

Code element type
count™

A feature for each code element type in the commit, along with
its number of occurrences as its value.
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Figure 3: Boxplots of the resulting values of the metrics used
to evaluate the built Random Forest classifiers.

number of refactoring commits (see Table 1). In addition, since
we wanted to study the possibility of determining co-occurring
refactoring commits, we needed to study projects with a sufficient
number of co-occurring refactoring commits. Thus, to build our
classifiers, we selected ten projects from our dataset that maintain a
good quality dataset in terms of the number of commits (i.e., source
code and co-occurring refactoring commits). The list of projects
can be found in our replication package [12]. Furthermore, to deal
with the imbalance problem in our study, we applied the synthetic
minority oversampling technique (SMOTE), which is a strategy for
oversampling and can effectively boost a classifier’s performance
in our case [5]. However, it is worth noting that we only applied
the sampling technique to the training dataset, and not applied it
to the testing dataset.

Once our dataset was chosen, we began applying various ma-
chine learning classifiers. To compare the classifiers against one
another and to determine the performance of each classifier, we
compute the well-known evaluation metrics, which are Recall, Pre-
cision, F1-score, and Area Under the ROC Curve (AUC) value. In this
study, we applied various classifiers that include Logistic Regres-
sion, Support Vector Machine, and Random Forest, at their default
settings on a per-project basis using 10-fold cross validation [6]. We
found the Random Forest classifier achieved the best performance.

In addition, in this RQ, we examined the importance of each of

our features. For this, we used sci-kit’s feature importance based
on the mean decrease in impurity since our dataset does not have
any categorical features and therefore does not have any high car-
dinality features, but may have correlated features, which has a
negative impact on the alternative feature permutation-based im-
portance [9]. Then, using this metric, we evaluated the importance
of each feature for all of the Random Forest classifiers created for
each project dataset. Finally, we aggregated the feature importance
to demonstrate which features play the most important roles in
predicting co-occurring refactoring commits.
Result: Figure 3 shows the results of the built Random Forest
classifiers. The Figure presents the distribution of the precision,
recall, F1-score, and AUC values for all the ten examined projects.
As we can see, the built Random Forest classifiers achieve a mean
F1-score of 0.65 (median = 0.66) and a mean AUC of 0.75 (median =
0.74). Overall, although these may seem like modest performance
numbers, they are quite significant given the unbalanced nature of
the studied dataset (i.e., only a small portion of the commits are co-
occurring refactoring commits). Interesting, there are two projects
that achieved an extremely high performance namely Kafka and
Phoenix that achieve AUC of 0.78 (F1-score = 0.76) and AUC of
0.92 (F1-score = 0.91), respectively.

In addition, we examined the most important feature in deter-
mining when test code should be refactored with source code refac-
torings. Figure 4 shows the distribution of top ten most important
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Figure 4: Boxplot of top features, chosen by importance in
built Random Forest classifiers.

features used in the built Random Forest classifiers. Out of the top
10 features, they can be grouped into commit size features (LOC left
side, LOC right side, # of files, # of refactorings), experience features
(Dev refactoring experience, dev refactoring commit experience),
history features (# Previous Refactorings, age), and code elements
(Method and Single Variable declarations). Each group has its own
significance, but this may demonstrate that each of these groups of
features has an influence on whether test code should be refactored
when source code is refactored.

Our classifiers can effectively determine the co-occurrence of test
and source code refactoring commits with a median AUC of 0.74.
Also, our results showed that the refactoring size and developer
refactoring experience are the most important features.

4 THREATS TO VALIDITY

There are a few significant limitations to our work that need to
be considered when interpreting our findings. The first limitation
is that we relied on the accuracy of the RefactoringMiner tool to
identify, classify, and provide meaningful features for our classifiers.
However, with an expected precision of 99.6%, and a recall of 94%,
we expect the impact to be pretty negligible [19]. Another limitation
of our study can be our dataset. Our work focuses only on 77
projects, all written in the same programming language, Java, and
from the Apache organization. This means that our findings may
not extrapolate well to other programming languages or other
organizations.

5 CONCLUSIONS

In this work, we studied the co-occurrence of source code and
test code refactorings opportunities. We started by analyzing 77
projects to identify the prevalence of co-occurring refactorings
between source and test code. Our findings showed that on average
17.9% of refactoring commits are co-occurring refactoring commits.
We also found that Change Variable Type and Move Class are the
most common refactorings applied to test code in co-occurring
refactoring commits. Additionally, we built predictive classifiers
to determine when refactoring test code can co-occur with source
code refactoring for ten projects. Our findings showed that the
built classifiers could accurately predict when test and source code
refactoring co-occur with AUC values between 0.67-0.92. Finally,
our analysis also showed that the most important features for our
predictive classifiers are related to the refactoring size and developer
refactoring experience.
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